
Screen-Space Far-Field Ambient Obscurance

Ville Timonen∗

Turku Centre for Computer Science
Åbo Akademi University

Figure 1: Left: screen-space far-field (≥ 15 px) occlusion component solved by our method in 4.6 ms on a 1280(+256)×720(+144) depth
buffer. Right: ray traced screen-space reference result.

Abstract

Ambient obscurance (AO) is an effective approximation of global
illumination, and its screen-space (SSAO) versions that operate on
depth buffers only are widely used in real-time applications. We
present an SSAO method that allows the obscurance effect to be de-
termined from the entire depth buffer for each pixel. Our contribu-
tion is two-fold: Firstly, we build an obscurance estimator that accu-
rately converges to ray traced reference results on the same screen-
space geometry. Secondly, we generate an intermediate represen-
tation of the depth field which, when sampled, gives local peaks of
the geometry from the point of view of the receiver. Only a small
number of such samples are required to capture AO effects without
undersampling artefacts that plague previous methods. Our method
is unaffected by the radius of the AO effect or by the complexity
of the falloff function and produces results within a few percent
of a ray traced screen-space reference at constant real-time frame
rates.

1 Introduction

Ambient occlusion approximates global illumination under the as-
sumption that the scene is uniformly lit by blocking part of the in-
cident light due to surrounding occluders. Ambient obscurance ex-
tends ambient occlusion by introducing a falloff term which atten-
uates the occlusion effect as a function of occluder distance. The
appropriate choice for a falloff term depends on various factors and
therefore an ambient obscurance algorithm should be able to sup-
port any such distance dependent falloff function.

Screen-space ambient occlusion and obscurance (SSAO) methods
have recently become very popular in real-time applications be-
cause they only require the depth buffer as input and are therefore
easily applied as a post-process or plugged into a deferred renderer,
work on fully dynamic scenes, and are insensitive to scene com-
plexity. The falloff term is defined in eye-space distances, which
means that the obscurance radius in screen-space depends on the
camera’s distance to the geometry and may get arbitrarily large.

∗e-mail: vtimonen@abo.fi

If this was not the case, objects would change appearance as they
get closer to the camera. Indeed, an AO effect that conveys the
proper global illumination feel often extends a significant radius in
screen-space. The best any SSAO method can do given the infor-
mation available in the depth buffer is represented by a ray tracer:
From each receiver pixel rays are traced over the hemisphere to
their nearest intersection with the depth field, and then falloff and
cosine weighted.

A majority of real-time SSAO methods rely on taking point sam-
ples of the depth buffer in the immediate pixel neighborhood of
the receiver. This approach is efficient for gathering ambient oc-
clusion from a small neighborhood around the receiver, making
screen-space near-field occlusion largely a solved problem. How-
ever, as the sampled environment grows in radius, geometry will be
missed and noise is produced. Keeping up with the increased ra-
dius requires quadratic work and has not been found feasible, even
after accepting a blurrable amount of noise. It is possible, how-
ever, to use mipmapped depth data such that lower resolution levels
are used when sampling farther from the receiver. This approach
is used by most state-of-the-art methods and does not miss geome-
try, but simply averaging the depth field corrupts occluders as seen
from the receiver and causes erroneous results.

In this paper our primary contribution is an intermediate representa-
tion of the depth field that can be sampled at various distances from
the receiver to get virtual scene points that reconstruct features im-
portant for AO. The intermediate representation is generated in a
pre-pass which scans through the depth field, runs in time that is
linear in the depth field size, and generally takes a small fraction
of the total time. Our secondary contribution is an obscurance es-
timator that is fast to evaluate and converges accurately to the AO
integral [Zhukov et al. 1998]. When evaluated with scene samples
from our intermediate representation, the estimator reaches results
within a few percent of the ray traced screen-space reference at real-
time frame rates.

Our algorithm executes in three passes: First the depth field is pre-
processed by scanning along multiple azimuthal directions, next the
output is traversed orthogonally to the scanning directions to pre-
integrate dominant occluders, and finally obscurance is evaluated

per-pixel from the reconstructed occluders. The key features of our
SSAO solution are:

• Constant time, unbounded radius (the effect may span the en-
tire screen)

• Does not miss important occluders (no noise or need to filter)

• Supports arbitrary falloff functions (no render time evalua-
tion)

2 Previous work

In this section we cover only previous work most relevant for our
method; for a recent review of ambient occlusion and SSAO meth-
ods, consult [Ritschel et al. 2012].

The main branch of present SSAO methods follows from the works
of [Mittring 2007] and [Shanmugam and Arikan 2007] where point
samples around the receiver are taken to approximate the visibil-
ity of the hemisphere. In order to avoid overocclusion when sam-
ples farther from the receiver are evaluated, it is important to know
whether there is intersecting geometry closer to the receiver which
would render the sampled point invisible. To this end, it is possi-
ble to connect the samples along one azimuthal direction to get one
horizon value instead, as done in [Bavoil et al. 2008]. AO is calcu-
lated based on the global horizon angle and rays below the horizon
are assumed to be occluded. However in ambient obscurance, when
a non-constant falloff term is used, occluders’ distances below the
horizon affect the amount of occlusion and need to be known. Our
method tracks the horizon incrementally as geometry is traversed
outwards from the receiver, and occlusion coming from geometry
visible to the receiver below the global horizon is properly weighted
by distance.

Global horizons for a height field are calculated efficiently in [Ti-
monen and Westerholm 2010] for direct lighting of a height field,
however for ambient obscurance the same single-horizon problem
applies: No information is kept of the geometry below the global
horizon, and weighting the occlusion properly according to a falloff
function is not possible. Errors can get arbitrarily large because it is
not known how far the geometry below the global horizon is from
the receiver. [Timonen 2013] fits this method to SSAO by find-
ing the largest falloff attenuated occluder for each direction instead
of the global horizon. While this is much more useful for SSAO,
geometry above the largest occluder is ignored and the distance to
the geometry below the largest occluder is still unknown. While
this is suitable for approximate SSAO, results do not converge to
a ray traced reference or scale to very high quality like those of
our method. Also, both [Timonen and Westerholm 2010] and [Ti-
monen 2013] sample the height field along straight lines whereas
we account for the visibility of the geometry over the full azimuth.
Considering geometry only along a set of straight lines significantly
accentuates banding (cf. Figure 10).

Lower resolution (mipmapped) depth buffers can be used for sam-
pling farther from the receiver as done by [Bavoil and Sainz 2009]
[Hoang and Low 2012] [McGuire et al. 2012]. An artefact-free
sampling of this multi-resolution representation is not a trivial task,
as shown in [Snyder and Nowrouzezahrai 2008]. Regardless of the
used low-pass filter, reducing the depth field over an area into a
single-valued texel does not capture the view-dependency when the
depth field is viewed from an arbitrary receiver. While we also use
a resolution hierarchy, we capture information of the enclosed ge-
ometry such that it retains the approximated local peaks as viewed
from any receiver. Furthermore, levels in our hierarchy are well-
aligned (do not overlap or have gaps), making artefact-free sam-
pling straight-forward.

Methods that sample an area around the receiver that is fixed in
screen-space may produce fast results [Loos and Sloan 2010], but
these methods neither scale to far-field AO nor respect a falloff
term. It is also possible to use a forward rendering approach to AO
whereby scene geometry prior to rendering is expanded and occlu-
sion is spread onto the area of influence. This approach is pursued
in [McGuire 2010], but the method does not scale to far-field effects
because of increased overocclusion and high fillrate requirements.

A near-field screen-space search can be coupled with a far-field
world-space method. A voxelization of the scene is ray traced
in [Reinbothe et al. 2009], and [Shanmugam and Arikan 2007]
use spherical proxies to approximate scene polygons. World-space
methods have significantly different characteristics to screen-space
methods: While they have the possibility to include geometry not
visible in the depth buffer, they are forced to evaluate the visibility
of many geometric primitives per pixel. This is costly and prone
to produce overocclusion. Results and performance depend on the
scene geometry whereas pure screen-space methods are insensitive
to scene complexity.

Finally, purely ray traced AO methods such as [Laine and Karras
2010] produce results similar in quality to ours but do not suffer
from the limitations of screen-space information. These methods
are, however, at least an order of magnitude slower.

3 Algorithm overview

Our algorithm takes as input the depth and normal buffers, the pro-
jection matrix, and a pointer to the falloff function. The depth and
normal buffers can change freely between frames, and the depth
buffer may include optional guard bands. Geometry within the
guard bands are considered as occluders, but obscurance values are
not calculated for pixels in the guard band. The output of our algo-
rithm is a floating point map of the ambient light.

We evaluate the 2D ambient obscurance integral in K azimuthal
slices. In Section 4 we describe our obscurance estimator that is
evaluated for each screen pixel. It takes scene points along each
azimuthal direction as input. In order to generate these points, our
method first scans the depth buffer in parallel lines in K azimuthal
directions and writes out an intermediate representation at regularly
spaced intervals along the lines as described in detail in Section 6.
This is illustrated for one azimuthal direction to the left in Figure 2.
This intermediate data is then optionally (when the depth field can
be assumed continuous) traversed perpendicular to the azimuthal
scan direction and turned into a prefix sum, as shown to the center
in Figure 2. The purpose of the prefix sum is to allow averaging of
the intermediate data over each of the K azimuthal sectors which
effectively avoids azimuthal undersampling and reduces banding.
This phase is described in Section 7. Finally, the prefix sum is
sampled per pixel, shown to the right in Figure 2, to construct points
(as input to our obscurance estimator) that track local peaks of the
depth field. As a reference method we use a mipmapped depth
buffer, described in Section 5, which is used in present state-of-
the-art. Results are presented in Section 8.

The remaining perceptually dominant artefact in our method is
banding. We propose three mutually complementary strategies to
reduce banding:

1. Averaging scene points over sectors in continuous depth fields
(Section 7)

2. Sparse evaluation of sectors which trades banding for blur and
reduces render times (Section 10)

3. Jittering sampling directions per-pixel which trades banding
for noise (Section 11.1)

Line scans Prefix sums Geometry reconstruction

p

h0

h1

Figure 2: The three main stages of our method for one azimuthal direction. The first stage scans the depth buffer in parallel lines (arrows
to the left) and outputs intermediate geometry at regularly spaced intervals (gray lines). The second stage traverses the output (arrows in the
middle) across multiple scan lines and generates prefix sums. The third stage samples the prefix sums per pixel (one pixel highlighted in gray
to the right) to construct scene points hi used as input by our obscurance estimator.

Our method is most useful for finding far-field occluders and can
be coupled with a lighter weight near-field search as discussed in
Section 9. The usual limitations of depth buffer geometry apply
and are discussed with regards to our method in Section 11.

4 Obscurance estimator

We build our obscurance estimator such that it converges to the
original definition of ambient obscurance [Zhukov et al. 1998]:

AO(p, ~n) =
1

π

∫

Ω

ρ(d(p, ~ω))max(0, ~n · ~ω)d~ω (1)

where d(p, ~ω) is the distance of the nearest occluder from p in
direction ~ω, ρ → [0, 1] is the falloff term as a function of distance,
and Ω denotes the unit sphere in R

3. The falloff function should
be smooth and it typically applies that ρ(0) = 1 and ρ(∞) = 0,
but the exact type and rate of decay is defined by the application.
We support any such falloff function and its complexity only affects
pre-calculation, not runtime performance.

For geometrically correct SSAO the surrounding geometry for a re-
ceiver has to be traversed in azimuthal directions starting from near
the receiver and progressing outwards, an approach first taken by
[Bavoil et al. 2008]. This way the nearest occluder along a direc-
tion from the receiver is guaranteed to be found and contribution
from invisible geometry (behind a nearer occluder) can be correctly
ignored. At each receiver we consider the vector from the receiver
to the camera to represent zenith, and the sphere around the receiver
is split into K azimuthal sectors. Therefore the 2D integral of Eqn.
1 is decomposed into K 1D integrals. Each of the 1D integrals is
evaluated on a plane that includes the zenith vector and the vector
pointing towards the azimuthal angle k2π/K:

AO(p, ~n) ≈

1

π

K−1
∑

k=0

(

wk

∫ π

0

ρ(d(p, ~θk))max(0, ~nk · ~θk)sinθdθ

)

(2)

where ~θk is a unit vector in the k:th azimuthal plane towards the
horizon angle θ, and ~nk is the projection of ~n onto this plane. Ge-
ometry will be sampled from the depth buffer along equal size az-
imuthal sectors in screen-space which map to relative sizes wk as
measured around the zenith for each p. The term sinθ accounts for
the width of the sector as a function of the horizon angle and goes
to zero near the zenith.

The integral in Eqn. 2 is evaluated piecewise from depth field points
in each sector. The points should be culled to form a series of in-
creasing slopes as measured from the receiver p, i.e. the points

should be visible to p. In practice, when the depth field is sampled
progressively farther from the receiver, the largest horizon angle
from the receiver to the sampled scene point is tracked and new
points are known to be visible when their horizon angle exceed the
previous maximum horizon angle. As we will only evaluate obscu-
rance from a set of points along a sector that are apart from each
other, we do not know the distance of the geometry between the
points. For conservative obscurance, we assume that each sampled
scene point represents a "slab" of geometry that extends outwards
from the camera along the negative zenith direction, as illustrated
in Figure 3. The slabs extend the thickness of the depth field; to
infinity if the depth field is assumed continuous. While it would

camera c

far plane
azimuthal direction

p

~z

~nk

h2

h1

h0

Figure 3: A sequence of Ik = 3 partially visible slabs along sector
k. Points hi are the top points of the visible slabs. The strength of
the falloff term is noted by shading.

require a slab for every visible point in the depth field along the
azimuthal direction to represent the integral in Eqn. 2 exactly, we
note that only a few (less than 10) points are required to give values
not more than 1% off from the ray traced values if the points are
chosen carefully, which we will show in Section 8.

The piecewise evaluation of Eqn. 2 in Ik visible slabs now be-
comes:

∫ π

0

ρ(d(p, ~θk))max(0, ~nk · ~θk)sinθdθ ≈

Ik−1
∑

i=0

||~nk|| (L(ai, bi, ci, d)− L(ai−1, bi, ci, d)) , (3)

ai = ∠(hi − p, ~z),

bi = ((py − cy)(hix − cx)− (px − cx)(hiy − cy))/||hi − c||,

ci = ∠(hi − c, ~z), d = ∠(~nk, ~z)

where L is a 4D pre-calculated table. The four arguments of L, in
order, are

1. The angle ai of the vector from the receiver to the sampled
scene point

2. The closest distance bi from the receiver to the line formed by
the slab, hi + t(hi − c)

3. The angle ci of the slab

4. The angle d of the projected normal

where all angles are with respect to the zenith vector ~z = c− p. L
is constructed in an offline pre-pass by generating the correspond-
ing slabs and evaluating the falloff weighted integral numerically by
ray casting. We have implemented L as a 3D texture where ci and d
share an axis. The sharing is implemented by first splitting the axis
into segments, one for each discretized value of d, and then placing
consecutive values of ci consecutively within each segment. There-
fore ai, bi, and ci can be linearly interpolated and d is chosen as the
nearest discretized value. Although L is of high dimensionality, the
involved functions are very smooth and therefore low resolutions
are sufficient which helps to keep the texture size moderate (within
a few MB).

5 Reference method: mipmap

Our obscurance estimator needs as input the scene points along
azimuthal directions in the depth buffer for each receiver. In the
simplest case these points can be direct depth buffer samples de-
projected into eye-space. While this is the most widely taken ap-
proach in current SSAO methods, it does not scale well to far-field:
Dense sampling translates into high render times and sparse sam-
pling causes undersampling artefacts because important geometry
might be missed.

The approach taken by previous state-of-the-art SSAO methods is
to generate a depth pyramid (mipmap) that has a series of lower
resolution levels of the depth buffer. Regardless of the filter used
to generate the lower resolution levels from the base level, this ap-
proach does not retain the view-dependent information of the depth
field necessary for accurate AO. We tried several filters including
the ones covered in [McGuire et al. 2012] and considered averaging
to produce the best results as it does not introduce sudden changes
to obscurance like, for example, max-mipmaps do. However, when
the depth field cannot be assumed continuous, only points in the
original depth buffer can be used. In this case we found max-
mipmaps to perform best and we use them in Section 11. Until
Section 11 we assume a continuous depth field and compare our
geometry representation against averaged mipmaps.

In the mipmap method, from each receiver point, we start traversing
the surrounding depth buffer along each of the K azimuthal direc-
tions by first sampling the base level texture at a distance of one
texel. After each sample, the step size is multiplied by a constant
and the sampling distance is accumulated by the step size. This
yields an exponentially sparser sampling. We found the constant
of 1.5 to produce the best performance-quality tradeoff when used
with K = 16 and these parameters are used in Section 8.

We use trilinear filtering available in hardware, and choose the
mipmap level in such a way that the sample’s coverage of the depth
buffer matches the sector’s width at any given sampling distance.
In order to avoid sudden changes in obscurance when the last sam-
pling position goes outside the depth buffer, an extra sample is al-
ways taken at the very edge of the depth buffer.

6 Intermediate geometry along scanlines

In this section we describe how our method scans the depth buffer
in order to create an intermediate representation of the depth field.
We scan the depth buffer in a dense set of parallel lines for each K
azimuthal direction and incrementally track the depth field profile
along those lines. The parallel lines are spaced one texel width apart
along the depth buffer and the lines are traversed one texel width
step at a time. In a threaded implementation one thread processes
one line. A scan along one azimuthal direction in a depth buffer is
shown to the left in Figure 4.

m0

m0

Figure 4: The depth buffer (grid shown in the background) is
scanned in one of the K azimuthal directions in parallel lines (ar-
rows). The maximum height m0 of each line every B0 = 3 steps
(thick gray lines) is written to a buffer holding the intermediate
data. Progression along one line is shown to the right.

We base our method on the intuition that points important for AO
are local peaks in the depth field. To track these local peaks, we
find the highest (nearest to the camera) depth field points along the
lines. In practice, we step through each line incrementally and at
each point we sample the depth buffer and deproject the scene point
into eye-space. The maximum height value is then remembered
along the line until B0 steps have been taken. After B0 steps the
maximum height is written into an intermediate geometry buffer
and reset. This is illustrated to the right in Figure 4. The process is
repeated until the end of the depth buffer.

However, which local peak has the highest contribution to AO is
dependent on the angle at which the receiver views the peak. The
maximum height value is guaranteed to represent the highest hori-
zon value for a receiver that is at the same height, i.e. when the
peak is viewed directly horizontally. However, receivers (points
along the line) may reside at various heights and therefore view the
depth field peaks from different angles. Instead of storing the max
height value as viewed directly horizontally, we store 2 max height
values: one as viewed horizontally (mo) and one as viewed at a
downwards angle (m1). We call the angles along which the max
height values are viewed receiver angles. This is illustrated to the
left in Figure 5.

During the evaluation of the obscurance estimator the intermediate
geometry buffer is read and a virtual point is reconstructed at the
intersection of the receiver angles as shown to the right in Figure
5. Intuitively this virtual point is a view-dependent (for a likely re-
ceiver) approximation of the highest peak within the interval of B0

steps along the scanning line. After culling the invisible points per
receiver, these points can be directly used as hi by the obscurance
estimator in Eqn. 3.

We have chosen to use slopes 0 (horizontal) and -1 (45 degrees
downward) for the receiver angles. We found that the choice for the
receiver angles does not make a large difference to results, however
it is important that there are two different angles such that the recon-
structed virtual point will have both a depth and a distance value.
Algorithm 1 lists the pseudocode for scanning one line in the depth
buffer.

m1

m0

m0

m1

m0

m0

m1

m1

h1

h0

Figure 5: The maximum heights (denoted by m0 and m1) as
viewed along 2 receiver angles are written to the intermediate
buffer every B0 = 3 steps. The virtual points (hi) as geometry
used by the obscurance estimator are reconstructed at the intersec-
tion of the corresponding receiver angles positioned at m0 and m1,
as shown to the right.

Algorithm 1 ScanLine(float2 pos, float2 dir, int steps, int lineNo)
Pos is the coordinate of the first step in the depth buffer and dir is a
vector for one step along the scanline.

1 float m0 = −∞
2 float m1 = −∞
3
4 while (steps−−)
5 {
6 float3 p = deProj(sampleDepth(pos), pos)
7 // p is projected onto k:th azimuthal plane
8 float2 pk = (p.xy · dir, p.z)
9

10 m0 = max(m0, pk.y)
11 // s = slope of the downwards receiver angle (−1)
12 m1 = max(m1, pk.y + s·pk.x)
13
14 if (steps modulo B0 == 0)
15 {
16 // iBuf = the intermediate buffer (output of this stage)
17 iBuf[lineNo][steps/B0] = (m0, m1)
18 m0 = −∞
19 m1 = −∞
20 }
21
22 pos += dir
23 }

Algorithm 2 lists the pseudocode for evaluating obscurance at one
screen pixel along one azimuthal direction. Since SSAO is sep-
arable in azimuthal directions, Algorithms 1 and 2 can be calcu-
lated sequentially for each K, in which case our method requires
O(W0 ·H0/B0) space for the intermediate geometry buffer, where
W0 and H0 are the depth buffer dimensions including guard bands.
For a typical case of W0 = 1280+256, H0 = 720+144, B0 = 10
this is roughly 1 MB. If the application is not memory constrained
it is faster to evaluate Algorithm 1 for all K simultaneously as to
maximize the number of concurrent threads and therefore improve
utilization of a GPU. For K = 16 the respective memory require-
ment becomes 16.2 MB.

The accuracy of our intermediate geometry becomes progressively
better compared to mipmaps when the interval size increases. Due
to the falloff function occluders far from the receiver get less weight
and also map to smaller swaths of the horizontal angle than nearby
occluders. Therefore it is sensible to construct occluders progres-
sively more sparsely when farther from the receiver. Similarly

Algorithm 2 EvalObscurance(float2 pixelPos, float2 dir)

1int lineNo = find the line with direction dir closest to pixelPos
2int iVal = find the nearest interval in lineNo that is at least B0

steps from pixelPos
3
4float3 p = deProj(sampleDepth(pixelPos), pixelPos)
5// zScale scales z onto the slanted azimuthal plane

6float zScale =
√

1 + (p.x/p.z · dir.y − p.y/p.z · dir.x)2
7float2 pk = (p.xy · dir, p.z·zScale)
8
9float (AO, maxAngle) =

EvalNearField(pixelPos, dir, distance to iVal)
10
11while (iVal ≥ 0) {
12float (m0,m1) = iBuf[lineNo][iVal]
13// s = slope of the downwards receiver angle
14float2 h = ((m0 − m1)/s, m0·zScale)
15float angle = ∠((h − pk),−~pk) // c is at the origin
16if (angle > maxAngle)
17{
18// Obs(ai, ai-1, hi, p) evaluates i:th segment from Eqn. 3
19AO += Obs(angle, maxAngle, h, pk)
20maxAngle = angle
21}
22iVal−−
23}
24
25return AO

to building multiple resolutions of the depth field in the form of
mipmaps, our intermediate geometry can be made into a 1D pyra-
mid. We form levels of the intermediate geometry such that their
intervals increase exponentially from the base level’s, B0. There-
fore the interval of level n is Bn = B0 · 2

n. The levels can be effi-
ciently generated by taking the max m0 and m1 from the two cor-
responding lower level intervals. Generating the exponential hier-
archy roughly doubles the required space but reduces the per-pixel
time complexity from O(n) to O(log(n)) where n is the pixel dis-
tance from the receiver to the edge of the depth buffer.

7 Averaging sectors

In Section 6 we described how to construct virtual points for the
obscurance estimator defined in Section 4 from geometry along a
single line in the depth buffer. We propose this approach when it
is not possible to average or interpolate depth field values, which is
the case in Section 11 where the depth field is assumed to represent
a volume of a finite thickness. In this section we assume that the
depth field is continuous and averaging is thereby allowed.

Ideally the virtual points should represent the entire sector instead
of the thin texel wide line along the center of the azimuthal sec-
tor. The sector’s width increases linearly in the distance from the
receiver as demonstrated in Figure 6. In Figure 6 lines contribut-
ing to the obscurance at p are shown as arrows. The horizontal
intervals are equal to the gray lines perpendicular to the scanning
direction previously shown to the left in Figure 4. In order to con-
struct the averaged point for the highlighted middlemost interval
shown in Figure 6, we simply average m0 and m1 over the par-
allel lines lA...lB fitting into the sector at that specific distance:
(ma

0 ,m
a
1) = 1/(lB − lA + 1) · ΣlB

li=lA
iBuf[li][iV al]. When the

virtual point is constructed (line 14 in Algorithm 2) ma
0 and ma

1 are
used instead of m0 and m1. In order to calculate the average in

B0

B0

B0

p

lBlA
iBuf[li][iV al]

Figure 6: The downward arrows denote scan lines along one az-
imuthal scanning direction. Lines indexed li ∈ [lA, lB] at the high-
lighted interval (constant index iV al) fit into the sector from re-
ceiver p and their m0 and m1 should be averaged.

constant time, we turn the buffer iBuf into a per-interval prefix sum
iBufP such that iBufP [li][iV al] = Σli

l=0
iBuf[l][iV al]. From the

prefix sum the average over any line range l0...l1 for interval iV al
can then be efficiently calculated as (iBufP [l1][iV al]− iBufP [l0 −
1][iV al])/(l1 − l0 + 1).

We therefore introduce another stage between Algorithm 1 and 2
which traverses the intermediate geometry buffer iBuf perpendicu-
larly to the scan direction in Algorithm 1 and accumulates m0 and
m1 values over lines. This stage produces the prefix summed ver-
sion iBufP which can, in fact, be built in-place over the original
iBuf.

Finally, when evaluating obscurance, instead of averaging the inter-
vals across the entire sector width, the obscurance can be evaluated
in multiple segments to increase azimuthal resolution. While doing
so does not produce results quite as accurate as if the number of
sectors K is increased by a corresponding factor, evaluating a sec-
tor in multiple segments is computationally lighter than increasing
the number of sectors and has the same effect on reducing banding.
More importantly, evaluation in multiple segments does not require
extra azimuthal scans over the depth buffer. We have chosen to split
each sector in half and evaluate obscurance in 2 segments per sec-
tor. From now on, we denote this by adding a multiplier to K, e.g.
K = 8× 2 for eight azimuthal directions and two segments.

8 Results

We ran our algorithm on AMD Radeon HD 7970
(OpenCL) and NVIDIA GeForce GTX 580 (CUDA).
Sources are available under the BSD license online at
http://wili.cc/research/ffao/. The mipmap
method using our obscurance estimator and Horizon-Based Am-
bient Occlusion (HBAO) [Bavoil et al. 2008] are implemented as
OpenGL fragment shaders. Performance and quality comparison
between other recent SSAO methods can be found in [Vardis et al.
2013] and [McGuire 2010].

Our algorithm calculates the far-field SSAO in 3 kernels:

1. The Scan kernel scans through the depth buffer in K az-
imuthal scanning directions in parallel lines and finds local
peaks of the depth field at regularly spaced intervals.

2. The Prefix sum kernel reads through the values over multi-
ple lines in a direction perpendicular to the scan direction and
generates prefix sums.

3. The Obscurance kernel reconstructs virtual points from the
prefix sums that are averaged over the azimuthal sector width

at each screen pixel. The final obscurance value per pixel
is calculated by evaluating the obscurance estimator with the
virtual points.

We have chosen two scenes as our main test material. The first
scene is an architectural scene with simple planar geometry (Figure
7, top), and the second scene shows complex geometry and foliage
(Figure 7, bottom). The scenes are rendered using exponentially
decreasing falloff functions whereby in the first scene the falloff
function decays slower than in the second scene. All renderings
use a 10% guard band (extending 10% of the visible framebuffer
width or height at each side) which is denoted by postfixing it to
the resolution in parentheses.

For our method we use K = 8 × 2 and K = 16 × 2 and for the
mipmap method we use K = 16. As reference we use ray trac-
ing on the same geometry (a single-layer depth buffer with a 10%
guard band). In the ray traced result rays with cosine-weighted di-
rections are cast around the hemisphere for each receiver pixel, and
stepped through in small steps until geometry is being intersected.
The intersection distance is then weighted by the falloff function
and accumulated to the result. This can arguably be considered the
best result any method can do with the available screen-space data.

In addition to difference images, we measure the error using two
metrics: eA measures the average per-pixel variation from the ray
traced values and e<5% measures the number of pixels within 5%
of the ray traced values. A high value in e<5% denotes that only
few pixels behave abnormally, which also implies temporal stability
since the reference values do not wave or flicker. In Figure 7 we
have rendered the two scenes using our method and the mipmap
method and compared the results against the ray tracing.

Recall that our obscurance estimator conservatively assumes a
scene point to represent a slab of geometry which extends along
the negative zenith. However, actual depth field geometry between
slabs can be closer to the receiver. The error coming from the over-
estimated distance is relative to the density of the slabs, which we
in this section keep constant at roughly 8 slabs per azimuthal di-
rection. The average error introduced by this in the first scene is
eA ≈ 0.6% and in the second scene eA ≈ 0.8%, which sets a
lower bound for the error as K is increased. Obscurance as esti-
mated from the geometry produced by our method is very accurate
even when a low number of sectors is being used, mainly because
the evaluated virtual scene points are tailored to capture the fea-
tures of the scene geometry that specifically contribute to AO. The
mipmap method is inadequate in capturing the "profile" of the ge-
ometry within the sample’s radius and produces erroneous results.
Furthermore, the mipmap method converges to the ray traced val-
ues very slowly: It takes over 300 ms to achieve the same level of
error as in our method at K = 8× 2 and several seconds to match
K = 16× 2.

While the quantitative error in our method is small, there can still
be banding that is perceptually prominent. The level of banding de-
pends on the geometric content: Bands are cast by sharp tall edges
and are visible on planar surfaces. Averaging the virtual points over
the widths of each sector reduces banding, especially from occlud-
ers far from the receiver where the banding is almost completely
removed. Banding is discussed in more detail in Section 10. Tem-
poral coherence can be a major concern in SSAO methods that ex-
hibit undersampling, whereas the dense azimuthal scans employed
by our method do not skip geometry. Overall we observe that the
results of our method look temporally stable (under motion) which
is to be expected given the small variation with respect to the stable
ray traced values.

In comparison, Figure 8 shows results as rendered by HBAO us-
ing the same falloff function. HBAO does not assume a continuous

http://wili.cc/research/ffao/

Our, K = 8× 2

error×5

eA = 1.17%, e<5% = 98.9%

Our, K = 16× 2

error×5

eA = 0.92%, e<5% = 99.8%

Mipmap, K = 16

error×5

eA = 8.63%, e<5% = 25.8%

Ray traced

error×5

eA = 1.92%, e<5% = 93.3%

error×5

eA = 1.27%, e<5% = 98.5%

error×5

eA = 9.90%, e<5% = 38.9%

Figure 7: Two scenes rendered by our method and the mipmap method and their respective error images (white = 0%, black ≥ 20%, brighter
is better), average error (eA, lower is better) and the number of pixels within 5% (e<5%, higher is better) of the ray traced reference.

depht field. Instead, it assumes that geometry between two con-
secutive visible points along an azimuthal direction is at the same
distance from the receiver as the higher of the two visible points.
As HBAO’s obscurance estimator is not built to converge to Eqn. 1
results look dissimilar to the ray traced reference. HBAO requires
very many samples per pixel to cover far-field effects accurately
which shows up as impractically high render times.

Let W0×H0 be the resolution of the depth buffer with guard bands,
and W ×H without. Then the time complexity of our method for
kernel 1 is O(K ·W0 ·H0), for kernel 2 O(K ·W0 ·H0/B0), and
for kernel 3 O(K ·W ·H · log(W0+H0)). We consider the scaling
favorable, as the per-pixel cost increases only logarithmically in the
resolution while the full depth field is still considered for each pixel.

Our method is insensitive to the geometric content of the depth
buffer and the obscurance radius has no effect on the render times;
obscurance is gathered from the entire guard banded depth buffer
for every pixel. Table 1 lists the total execution time of the second
scene in Figure 7 for our method and for the mipmap method using
two different GPUs and two common screen resolutions. All tim-
ings only include far-field AO, which starts at approximately 1.5B0

pixels from the receiver. The same far-field boundary is used for
both methods.

Table 2 shows how the execution time is split between the three
stages of our method. In the Obscurance kernel, we measure the
average number of constructed virtual points to be 7.8 per sector

Table 1: Total render times of the far-field AO component.

Method Radeon 7970 GTX 580
1280(+256)× 720(+144), B0 = 10:
Our, K = 8× 2 7.26 ms 12.0 ms
Our, K = 16× 2 13.3 ms 23.6 ms
Mipmap, K = 16 19.2 ms 17.7 ms
1920(+384)× 1080(+216), B0 = 10:
Our, K = 8× 2 16.7 ms 29.4 ms
Our, K = 16× 2 31.6 ms 58.1 ms
Mipmap, K = 16 31.5 ms 37.9 ms

per pixel. The mipmap method takes an average of 8.5 samples per
sector per pixel.

Table 2: Render time breakdown of our method per kernel.

Phase Radeon 7970 GTX 580
1280(+256)× 720(+144), K = 8× 2, B0 = 10:
Scan 0.537 ms 0.489 ms
Prefix sum 0.945 ms 0.617 ms
Obscurance 5.77 ms 10.9 ms

12×48 samples per pixel, 81 ms

error×5

12×32 samples per pixel, 43 ms

error×5

Figure 8: Scenes from Figure 7 as rendered by HBAO on a
GeForce GTX 580 at 1280(+256)×720(+144). Obscurance is cal-
culated in K = 12 azimuthal directions that are randomly rotated
per pixel.

9 Integration with near-field

From a time complexity point of view our method is effective in
treating near-field obscurance as well, however our method’s ben-
efits become significant only when the geometry enclosed by the
interval Bi covers a large distance. In order to bring the nearest
interval in our method closer to the receiver, B0 has to be reduced,
which increases the execution time and the memory footprint. We
suggest that our method be combined with a lightweight near-field
search that gathers obscurance from an area around the receiver that
is at least a couple of pixels in radius. Where exactly the boundary
between the near-field and our method should be depends on the
characteristics of the near-field search: Our method should gener-
ally take over at a distance where the near-field method is no longer
faster. The interval of the base level, B0, determines the nearest
distance at which our method can take over. Halving B0 causes
one extra interval per sector to be evaluated (roughly a constant in-
crease in execution time), and reduces the area of influence of the
near-field search to quarter. Table 3 lists our method’s execution
times for different values of B0.

Table 3: Far-field render times of our method using different values
for the base level interval B0.

Base level Radeon 7970 GTX 580
1280(+256)× 720(+144), K = 8× 2:
B0 = 20 6.06 ms 9.77 ms
B0 = 10 7.26 ms 12.0 ms
B0 = 5 8.89 ms 14.7 ms

When integrating a near-field method with our method, the near-
field method should be executed first and provide the maximum
horizon angles from the near-field range along the K sectors for
each pixel as shown at line 9 in Algorithm 2. After this, our method

continues accumulating the obscurance from the horizon angle up-
wards until the edge of the depth field. We expect B0 ∈ [5, 10] to
be a suitable choice for a typical state-of-the-art near-field search.
Figure 9 shows the contribution of the far-field and the near-field
obscurance components on a 720p depth buffer using B0 = 10.

+

=

Figure 9: The far-field component (≥ 15 px) as produced by our
method and the near-field component (< 15 px) together form the
final ambient obscurance result (bottom).

10 Banding

While the error in our method is small, as established in Section 8,
there still might be some visible banding even though we average
occluders across the width of a sector. In order to gain intuition on
why banding happens, consider the case where an occluder—say,
a wall—enters an otherwise flat sector in a linear motion. If the
sector was split into infinitely many subsectors, obscurance would
increase linearly as the wall occupied a larger swath of the sector.
In our method, the entering wall increases the average height of
an interval linearly, which might not map to linear change in ob-
scurance. This is especially evident for very tall occluders which
cause the obscurance value to increase faster than linearly when
only a small portion of the occluder is occupying the sector. So,
while the obscurance values at band boundaries in our method do
not jump abruptly, they don’t follow the physically correct curve
either. In Figure 10 we show a split screen of a scene rendered us-
ing K = 8× 2 averaged sectors as described in Section 7 and then
using K = 16 straight sampling lines that go through the center
line of each sector. Averaging eliminates far-field banding almost
completely, which is often the hardest to rid, but near-field banding
still persists.

One solution to the banding problem is to increase the number of
scanning directions K which shows up as a roughly linear increase
in execution times of the Scan and Prefix sum stages. Instead of
evaluating all K sectors for every pixel, it is possible to evaluate the
sectors sparsely. We use the Separable Approximation of Ambient
Occlusion (SAAO) approach from [Huang et al. 2011], and evaluate
K = 18 × 2 sectors in groups of 3 × 3 pixels. Obscurance is
therefore evaluated in an interleaved pattern such that only K =
2 × 2 sectors are evaluated per pixel and the results are gathered
using an edge-aware 3 × 3 box filter as a post-process. Any 3 × 3
pixel neighborhood includes all K = 18 × 2 sectors and therefore
no noise is produced to the image. SAAO produces errors primarily
at edges and depth discontinuities in the depth buffer. While the
far-field AO component can also change by unbounded amounts

Figure 10: Left: our method using K = 8 × 2 averaged sectors.
Right: our method using K = 16 straight sampling lines.

between adjacent pixels in the screen, the error is mainly in the
near-field.

We have incorporated SAAO in our method by combining a 3 × 3
separated far-field AO with a full near-field AO. The primary arte-
facts are small integration errors (noise) at the boundary of the far-
field and near-field AO components because they are of different
sparsity. The error can be hidden to a large extent by a selective
blur that uses a small intensity threshold and does not currupt the
image. In Figure 11 a result without blurring is shown to the right,
which shows minor noise, and the image to the left includes a 5×5
bilateral box blur. Figure 1 is also rendered using the method shown
to the left.

Figure 11: Our method using K = 18 × 2 with SAAO. Left:
selectively blurred result. Right: result without blurring.

We implement SAAO by introducing two new kernels:

Box average kernel is an edge-aware filter which averages depth
and the normal vectors from a 3 × 3 pixel neighborhood of
each framebuffer pixel. If the dot product of the normal of the
source pixel and the candidate pixel is higher than 0.5 and the
relative difference of pixel depths is below 3%, the pixel is
accepted into the average. The accepted pixels are the pixels
from which the far-field obscurance is gathered in the Gather
kernel, and therefore a bit mask representing the accepted pix-
els is carried to the Gather kernel. The averaged depth and
normal vectors are used in the Obscurance kernel instead of
the original pixel’s values.

Gather kernel combines the per-pixel near-field obscurance with
an average of the far-field obscurance from pixels that were
marked as accepted in Box average kernel. Results are op-
tionally blurred using a bilateral box filter of size 5 × 5 with
a threshold of 7% (pixels within a maximum of 7% color dif-
ference are included into the average).

The SAAO enabled render times are shown in Table 4. The execu-

Phase Radeon 7970 GTX 580
K = 18× 2 (3× 3 separation), B0 = 10,
1280(+256)× 720(+144):
Scan 1.07 ms 1.08 ms
Prefix sum 1.09 ms 1.04 ms
Box average 0.265 ms 0.400 ms
Obscurance, sep. 1.60 ms 3.00 ms
Gather (with blur) 0.255 (0.591) ms 0.290 (0.652) ms
total (with blur) 4.28 (4.62) ms 5.81 (6.17) ms
1920(+384)× 1080(+216):
Scan 2.32 ms 3.08 ms
Prefix sum 2.03 ms 2.08 ms
Box average 0.566 ms 0.894 ms
Obscurance, sep. 3.82 ms 7.25 ms
Gather (with blur) 0.557 (1.31) ms 0.651 (1.46) ms
total (with blur) 9.29 (10.0) ms 14.0 (14.8) ms

Table 4: Render time breakdown of our method per kernel with
SAAO enabled.

tion time of the Obscurance kernel decreases linearly in the num-
ber of evaluated sectors. In fact, the Scan and Prefix sum kernels
now take more time than the Obscurance kernel in some cases, and
speeding up these two kernels would be the logical next step in im-
proving the execution times and is briefly discussed in Section 13.
Overall, SAAO is an efficient way to trade banding for noise or blur
while also improving render times significantly.

11 Limitations of depth buffer geometry

Scene geometry in a depth buffer is incomplete in two ways: (i)
geometry outside the view frustum is unknown and (ii) geometry
below the first depth layer is unknown. The first limitation is usu-
ally addressed by introducing a guard band around the depth buffer.
In this paper we have used a guard band of 10% (extending the
depth buffer by 10% of its width or height in each direction). As
the screen-space radius of the obscurance effect may become arbi-
trarily large when scene geometry is close to the camera, it cannot
be entirely contained within a guard band in any SSAO method.
However, the slower the decay of the falloff function the larger the
guard band generally needs to be and thus becomes important to
our method. Fortunately the Z pre-pass is usually quick and lower
resolution rasterization can be used in the guard bands to further
minimize its cost. As long as the Z pre-pass does not have a high
cost, we recommend even larger than 10% guard bands when calcu-
lating far-field AO effects in screen-space. It is also possible to con-
struct a simplified world-space representation of occluders around
the camera that are outside the depth buffer and accumulate SSAO
with occlusion from them using a global AO method, however this
approach is outside the scope of this paper

Most SSAO methods use only a single depth layer and make a
generic assumption about the geometry below the nearest depth
layer. Such an approach can never produce correct results in all
scenes and the artefacts vary. Until this section we have assumed
the depth field to be continuous, i.e. an infinitely thick volume.
This has the benefits, for example, that depth field points can be
averaged and interpolated, and objects appearing behind nearer ge-
ometry within the view frustum will not cause abrupt changes to ob-
scurance. The downside is that obscurance is often overestimated,
and to a large degree if there are thin objects, such as chains hang-
ing in the air, near the camera. Because we in this paper advocate a
high quality and physically correct SSAO, we find more promise in
approaches that attempt to fill the missing scene geometry with real

information of the scene instead of fitting a scene-dependent as-
sumption. In previous work such information has been introduced
in the form of multiple depth layers [Bavoil and Sainz 2009] and
multiple views [Vardis et al. 2013]. Extending our method into that
direction is left as future work.

Instead, we briefly demonstrate our method under the assumption
that the depth field has a fixed finite thickness, an approach taken by
many prior works such as [Loos and Sloan 2010] [McGuire et al.
2011] [McGuire et al. 2012]. While this will not work for arbi-
trary views or scenes that have varied objects, it produces plausi-
ble results when the depth field thickness is carefully selected and
matches that of the viewed objects. Fixing the thickness requires
a small change in the obscurance estimator in Eqn. 3: ai−1 is re-
placed with max(ai−1,∠(hi+ t(hi−c)/||hi−c||−p, ~z)) where
t is the thickness of the depth field.

When the depth field thickness is finite the depth field becomes
discontinuous. Therefore it is not allowed to generate new points
through interpolation or averaging. This limitation does not much
impact direct depth buffer samples which can be snapped to texel
centers as done in [Bavoil et al. 2008]. In our method this means
that averaging across the sector’s width as described in Section 7
cannot be used, however we still retain the advantage over direct
samples that our method tracks the local peaks along each sampling
line. The mipmap method, however, is most impacted: Not only is
interpolation spatially and across mip levels forbidden, but lower
resolution level textures have to reuse values found from the base
level and no averaging is possible. Out of various filters we found
max-mipmaps to produce best results for mipmapping.

In Figure 12 we show the Stanford Dragon as rendered by our ob-
scurance estimator with a fixed depth field thickness using our inter-
mediate geometry samples, direct depth buffer samples, and max-
mipmaps. All methods evaluate roughly 8 far-field samples per az-
imuthal direction. SAAO is not used. Direct depth field samples
and our method produce banding especially since sector averag-
ing cannot be used for mitigation. Therefore our method does not
use the Prefix sum stage and reconstructs scene points as per Al-
gorithm 1 and 2 directly. Our method produces smooth obscurance
along each azimuthal direction whereas direct depth buffer samples
produce artefacts depending on whether the samples hit or miss lo-
cal peaks in the depth field. Due to the missed geometry, direct
sampling also produces systematic underocclusion. Max-mipmaps
do not miss geometry but systematically overestimate it by always
picking the largest occluder within the sample’s radius. Also, as
linear interpolation cannot be used the results are blocky.

11.1 Jittering

It is possible to jitter the sampling directions per-pixel to trade
banding for noise. In our method this can be achieved by adding
or substracting an offset value from the sampled line indices lA and
lB shown in Figure 6. The offset is randomly selected per pixel, and
sampling along every direction is offset by the same amount as not
to cause bias. The offset is scaled according to the distance from
the receiver to the interval. Here, when averaging is not allowed
and only a single line is sampled along each azimuthal direction,
banding becomes especially severe if jittering is not used. Over-
all we find that jittering the sampling direction within the sector
boundaries efficiently eliminates banding in return for some noise.
Our method is the cache-friendliest of the three methods with re-
spect to jittering because neighboring pixels access the same inter-
vals which are laid out in memory consecutively and accesses are
likely to hit the same cache lines. Mipmapping exhibits better cache
locality than the sparser direct samples and its render times are not
impacted significantly by jittering.

12 Conclusion

We have presented a method to solve ambient obscurance in screen-
space from occluders that are beyond the immediate neighborhood
of the receiving pixel. We do this by first scanning the depth buffer
in a number of azimuthal directions while tracking local height
maxima and writing them into an intermediate geometry buffer.
After creating prefix sums of the intermediate geometry buffer, it
can be sampled per-pixel to obtain approximated local peaks in the
environment as seen from the receiver point, at various distances.
These reconstructed scene points are then evaluated using an obscu-
rance estimator to approximate the AO integral over the receiver’s
hemisphere. The obscurance effect in our method is only limited
by the falloff term, and our method can incorporate any such term
without its evaluation affecting render times. Overall our method is
able to produce very high quality AO effects that are close to a ray
traced screen-space reference.

The intended use for our algorithm is to couple it with a lightweight
near-field search to build a robust SSAO solution that accurately
integrates ambient obscurance from the entire guard banded depth
buffer.

13 Future work

Currently we scan the depth buffer densely, which is justifiable
since the Obscurance stage takes most of the execution time and is
not impacted by scanning density. However, a dense scan becomes
costly when SAAO is used as a significant amount of the total time
is spent in the Scan and Prefix sum stages that scale linearly in the
number of scanned lines. It is possible to leave out some of the
parallel lines during azimuthal scans without much impact on the
calculated obscurance because the lines are always approximately
facing the receiver and therefore have a limited contribution to AO.
Ideally, processing every n:th line reduces the execution time of the
Scan and Prefix sum stages by the factor 1/n.

Overall there are four main strategies to reduce the render time of
our method:

• Sparse scans as described above

• Separated obscurance evaluation sparser than 3×3 (which is
used in Section 10), such as 5×5

• Reducing K and increasing the number of segments in which
each sector is evaluated (e.g. K = 8× 4)

• Constructing fewer points (larger intervals) per azimuthal di-
rection per pixel.

We are also investigating the possibility of extending our method
to handle multiple depth layers [Bavoil and Sainz 2009] or mul-
tiple views [Vardis et al. 2013] which—when coupled with suffi-
ciently large guard bands—would alleviate the screen-space prob-
lem of missing scene geometry. This could allow our method to
produce results comparable to global ray tracing.

References

BAVOIL, L., AND SAINZ, M. 2009. Multi-layer dual-resolution
screen-space ambient occlusion. In SIGGRAPH ’09 Talks, ACM.

BAVOIL, L., SAINZ, M., AND DIMITROV, R. 2008. Image-space
horizon-based ambient occlusion. In SIGGRAPH ’08 Talks.

HOANG, T.-D., AND LOW, K.-L. 2012. Efficient screen-space ap-
proach to high-quality multiscale ambient occlusion. The Visual
Computer 28, 3, 289–304.

Our method

No jittering (16.3 ms) Jittered (19.1 ms)

eA = 1.18%

Direct samples

No jittering (16.8 ms) Jittered (38.8 ms)

eA = 2.12%

Max-mipmaps

No jittering (14.8 ms) Jittered (19.8 ms)

eA = 3.84%

error×5 error×5 error×5

Figure 12: The Stanford Dragon rendered in K = 16 azimuthal directions with a hand-picked thickness t using our intermediate geometry
(left), direct depth buffer samples (middle), and max-mipmaps (right). The right side of each image uses azimuthal directions that are
randomly jittered per-pixel. The resolution is 1280(+256)×720(+144) and the render times are reported for the far-field (B0 = 10) AO
component on a GeForce GTX 580.

HUANG, J., BOUBEKEUR, T., RITSCHEL, T., HOLLÄNDER, M.,
AND EISEMANN, E. 2011. Separable approximation of ambient
occlusion. In Eurographics 2011 - Short papers.

LAINE, S., AND KARRAS, T. 2010. Two methods for fast ray-cast
ambient occlusion. CGF: Proceedings of EGSR 2010 29, 4.

LOOS, B. J., AND SLOAN, P.-P. 2010. Volumetric obscurance. In
Proceedings of I3D 2010, ACM.

MCGUIRE, M., OSMAN, B., BUKOWSKI, M., AND HENNESSY,
P. 2011. The alchemy screen-space ambient obscurance algo-
rithm. In Proc. HPG, ACM, HPG ’11, 25–32.

MCGUIRE, M., MARA, M., AND LUEBKE, D. 2012. Scalable
ambient obscurance. In High-Performance Graphics 2012.

MCGUIRE, M. 2010. Ambient occlusion volumes. In Proceedings
of High Performance Graphics 2010.

MITTRING, M. 2007. Finding next gen: Cryengine 2. In SIG-
GRAPH ’07: ACM SIGGRAPH 2007 courses, ACM, 97–121.

REINBOTHE, C., BOUBEKEUR, T., AND ALEXA, M. 2009. Hy-
brid ambient occlusion. EUROGRAPHICS 2009 Areas Papers.

RITSCHEL, T., DACHSBACHER, C., GROSCH, T., AND KAUTZ,
J. 2012. The state of the art in interactive global illumination.
Computer Graphics Forum 31 (Feb.).

SHANMUGAM, P., AND ARIKAN, O. 2007. Hardware accelerated
ambient occlusion techniques on gpus. In Proc. I3D ’07, ACM.

SNYDER, J., AND NOWROUZEZAHRAI, D. 2008. Fast soft self-
shadowing on dynamic height fields. Computer Graphics Fo-
rum: Eurographics Symposium on Rendering (June).

TIMONEN, V., AND WESTERHOLM, J. 2010. Scalable Height
Field Self-Shadowing. Computer Graphics Forum (Proceedings
of Eurographics 2010) 29, 2 (May), 723–731.

TIMONEN, V. 2013. Line-Sweep Ambient Obscurance. Computer
Graphics Forum (Proceedings of EGSR 2013) 32, 4.

VARDIS, K., PAPAIOANNOU, G., AND GAITATZES, A. 2013.
Multi-view ambient occlusion with importance sampling. In
Proc. i3D, I3D ’13, 111–118.

ZHUKOV, S., INOES, A., AND KRONIN, G. 1998. An Ambi-
ent Light Illumination Model. In Rendering Techniques ’98,
Springer-Verlag Wien New York, G. Drettakis and N. Max, Eds.,
Eurographics, 45–56.

